Komplexchemie und Mechanismen metallkatalysierter CC-Kupplungsreaktionen

II*. Oxidative Addition von Chloraromaten an Pd⁰-Komplexe: Synthese, Struktur und Stabilität von Arylpalladium(II)-chloriden der Phosphanreihe

Wolfgang A. Herrmann, Christoph Broßmer, Thomas Priermeier und Karl Öfele

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstraße 4, D-85747 Garching bei München (Deutschland) (Eingegangen den 7. Januar 1994)

Abstract

Chlorobenzene and electron-poor aryl chlorides ClC_6H_4X (X = 4-NO₂, 4-CHO, 4-CN, 4-H) add oxidatively to Pd(PPh₃)₄ or Pd(PPh₃)₂(dba) at 100-140°C to give complexes of the type *trans*-Pd(PPh₃)₂(C₆H₄-*p*-X)Cl (1a-d). Oxidative addition of electronrich aryl chlorides ClC_6H_4Y (Y = 4-CH₃, 4-CH₃O) to Pd(PPh₃)₄ was expected to lead to the complexes *trans*-Pd(PPh₃)₂(C₆H₄Y)Cl (1e,f), but instead gave, in almost quantitative total yield, mixtures consisting of 90% *trans*-Pd(PPh₃)₂(Ph)Cl (1d) and 10% *trans*-Pd(PPh₃)(PPh₂(C₆H₄-*p*-Y))(Ph)Cl (3e,f). The stability of the oxidative addition products (1a-f) in solution was examined by means of *in situ* ¹H and ³¹P NMR spectroscopy and mass spectrometry. It is shown that the complexes 1e and 1f, synthesized independently by halogen-exchange from the iodo derivatives, undergo a facile aryl-aryl exchange between the palladium center and the coordinated phosphine ligands, just in contrast to 1a-c. Subsequent intermolecular phosphine scrambling leads to further isomerisation which results in the formation of the observed reaction products 1d and 3e,f. Complexes with chelating phosphine ligands (P-P) of the type *cis*-Pd(P-P)(Ph)Cl (2a,b; P-P = dppe, dppp) are obtained by oxidative addition of chlorobenzene to Pd(P-P)(dba) or by simple phosphine exchange from 1d. Their identity is supported by single-crystal X-ray diffraction of 2b.

Zusammenfassung

Die Umsetzung von Chlorbenzol und elektronenarmen Chloraromaten ClC_6H_4X (X = 4-NO₂, 4-CHO, 4-CN, 4-H) mit Pd(PPh₃)₄ oder Pd(PPh₃)₂(dba) bei 100-140°C ergibt die Komplexe der Formel *trans*-Pd(PPh₃)₂(C₆H₄-*p*-X)Cl (1a-d). Die oxidative Addition von elektronenreichen Chloraromaten ClC_6H_4Y (Y = 4-CH₃, 4-CH₃O) an Pd(PPh₃)₄ liefert dagegen nicht die Komplexe *trans*-Pd(PPh₃)₂(C₆H₄Y)Cl (1e,f), sondern ein Gemisch aus 90% *trans*-Pd(PPh₃)₂(Ph)Cl (1d) und 10% *trans*-Pd(PPh₃){PPh₂-(C₆H₄-*p*-Y))(Ph)Cl (3e,f). Durch *in situ*-¹H- und, ³¹P-NMR- sowie massenspektroskopische Messungen wurde die Temperaturstabilität der oxidativen Additionsprodukte 1a-f in Lösung untersucht. Es zeigte sich, daß die durch Halogenaustausch darstellbaren Komplexe 1e,f im Gegensatz zu 1a-c einen beidseitigen Aryl-Aryl-Austausch zwischen dem Palladium(II)-Zentrum und den koordinierten Phosphan-Liganden durchführen und über ein intermolekulares Phosphan-Scrambling zu den beobachteten Reaktionsprodukten isomerisieren. Die Chelatphosphan-Komplexe der Formel *cis*-Pd(P-P)(Ph)Cl (2a,b; P-P = dppe, dppp) lassen sich durch oxidative Addition von Chlorbenzol an Pd(P-P)(dba) oder Phosphan-Austausch an 1d darstellen. Ihre Identität ist durch eine Einkristall-Röntgenstrukturanalyse von 2b sichergestellt.

Key words: Palladium; Carbon-carbon bond formation; Catalysis; X-ray diffraction; Crystal structure

1. Stand der Literatur

Correspondence to: Prof. Dr. W.A. Herrmann or Dr. K. Öfele. * I. Mitteilung vgl. Ref. [9]. Die Aktivierung von Chloraromaten in palladiumkatalysierten organischen Reaktionen stellt eine große präparative Herausforderung dar. Während für Iod- und Bromaromaten eine Vielzahl solcher Reaktionen entwickelt wurde [1], ist der Funktionalisierung der Chlorderivate die relativ starke C–Cl-Bindung hinderlich (Bindungsenergie *ca.* 80 kcal mol⁻¹). Insbesondere die oxidative Addition der Halogenaromaten an einfache Pd⁰-Phosphan-Komplexe ist bei Chloraromaten erheblich erschwert, so daß im Vergleich zu den Iod- und Bromderivaten weit höhere Reaktionstemperaturen erforderlich sind [2a]. In den wenigen Pd-katalysierten Prozessen mit Chloraromaten wie z.B. Carbonylierung [3], Formylierung [4], und *Heck*-Olefinierung [5] gilt daher die oxidative Addition als geschwindigkeitsbestimmender Schritt im Katalysezyklus.

Untersuchungen zur oxidativen Addition hauptsächlich von Iodaromaten an $Pd(PPh_3)_4$ [2] haben gezeigt, daß über den reaktiven 14e-Komplex Pd(PPh₃)₂ phosphanstabilisierte Arylpalladium(II)-halogenide der Formel trans-Pd(PPh₃)₂(Ar)X gebildet werden (X = Halogen). Nichtaktivierte Chloraromaten konnten bisher nur an Pd⁰-Alkylphosphan-Komplexen, z.B. Pd- $(PEt_3)_4$, oxidativ addiert werden [6]. Mit den noch stärker nucleophilen Pd⁰-Phosphan-Komplexen vom Typ $Pd(dippp)_2$ bzw. $Pd(dippb)_2$ (dippp/dippb = Bis-(diisopropylphosphino)propan/-butan [7]) und Pd- $(PR_3)_2(dba)$ $(PR_3 = PCy_3, P(^iPr)_3; dba = Dibenzyli$ denaceton [8]) ließen sich Chloraromaten bereits bei 50-60°C in die entsprechenden oxidativen Additionsprodukte überführen. Während für die Reaktion der Iodaromaten mit $Pd(PPh_3)_4$ neutrale [2f] und geladene [2a,g] Übergangszustände diskutiert werden, hat man für die oxidative Addition der Chloraromaten an Pd- $(dippp)_2$ einen S_NAr -analogen, geladenen Übergangszustand mit "partieller Chlorid-Koordination" vorgeschlagen [7b].

Wir berichten hier, daß trotz anderslautender Berichte [2a,8] auch nichtaktivierte Chloraromaten, substituiert mit elektronenschiebenden Substituenten, an die Pd⁰-Komplexe Pd(PPh₃)₄ und Pd(PPh₃)₂(dba) oxidativ addiert werden. Hinsichtlich der Konstitutionsstabilität der gebildeten Produkte Pd^{II}(PPh₃)₂-(Ar)Cl bestehen jedoch erhebliche Unterschiede, was in der vorliegenden Arbeit durch *in situ*-¹H- und ³¹P-NMR-Messungen gezeigt wird. Wir beschreiben ferner die Darstellung der Chelatphosphan-Komplexe vom Typ *cis*-Pd(P-P)(Ph)Cl (P-P = dppe, dppp) sowie deren spektroskopische und strukturchemische Charakterisierung.

2. Synthese

Chloraromaten mit elektronenziehenden Substituenten (-M/-I) werden bei Temperaturen um 100°C und Chlorbenzol bei 140°C an Pd(PPh₃)₄ oxidativ ad-

Schema 1.

diert. Es entstehen nahezu quantitativ die phosphanstabilisierten Arylpalladium(II)-chloride trans-Pd (PPh₃)₂(Ar)Cl (1a-d). Sie können alternativ aus der entsprechenden Pd⁰-Vorstufe des Dibenzvlidenacetons, Pd(PPh₃)₂(dba) [9], dargestellt werden. Mit $Pd[P(p-Tol)_3]_3$ sind die formelanalogen Komplexe trans-Pd[P(p-Tol)₃]₂(Ar)Cl zugänglich. Die Komplexe 2a,b von Bis(diphenylphosphino)ethan und -propan, welche durch ihre Chelatnatur eine cis-Koordination am Palladium erzwingen, sind dagegen nicht durch Umsetzung von Chlorbenzol mit Pd(dppe), und Pd(dppp)₂ zugänglich. Vielmehr lassen sie sich quantitativ durch Ligandenaustausch aus trans-Pd(PPh₃)₂-(Ph)Cl darstellen. In geringeren Ausbeuten gelingt die Darstellung der Komplexe 2a,b auch aus Pd(P-P)(dba), den entsprechenden Pd⁰-Komplexen des Dibenzylidenacetons [9]. Die Umsetzungen verlaufen jedoch unter teilweiser Pd-Abscheidung, und man erhält als weitere Zersetzungsprodukte die Komplexe Pd(P-P)- Cl_2 (P-P = dppe, dppp) gemäß Schema 1.

Diese Befunde zeigen, daß die koordinative Absättigung der Bischelat-Komplexe $Pd(dppe)_2$ und $Pd(dppp)_2$ die Reaktivität hinsichtlich oxidativer Additionen stark herabsetzt, und daß maximal *ein* (P-P)-Chelatligand pro Palladiumzentrum zur Sicherung der gewünschten Reaktivität gestattet ist.

Mit elektronenschiebenden Resten substituierte Chloraromaten (Y = CH₃O, CH₃) reagieren ebenfalls mit Pd(PPh₃)₄. Es werden jedoch im Gegensatz zu den elektronenarmen Chloraromaten nicht die erwarteten Additionsprodukte isoliert (s. o.). Die Umsetzung von 4-Chloranisol mit Pd(PPh₃)₄ bei 140°C ergibt ein Gemisch aus 90% Pd(PPh₃)₂(Ph)Cl (1d) und 10% Pd (PPh₃)[PPh₂(C₆H₄-*p*-OCH₃)](Ph)Cl (3f). Daneben werden die Phosphane PPh₃ und PPh₂(C₆H₄-*p*-OCH₃) im Molverhältnis 70/30 freigesetzt. In gleicher rela-

Schema 2.

tiver Ausbeute werden auch bei der Umsetzung mit 4-Chlortoluol die Komplexe 1d und $Pd(PPh_2)[PPh_2-(C_6H_4-p-CH_3)](Ph)Cl (3e)$ erhalten (Schema 2). Die NMR- und massenspektroskopisch identifizierten Reaktionsprodukte resultieren aus einer intramolekularen Umlagerung am Pd^{II}-Zentrum in Verbindung mit einem intermolekularen Austausch gegen freies Triphenylphosphan. Die zugrundeliegenden Isomerisierungsvorgänge werden bei der Betrachtung der Konstitutionsstabilität dieser Komplexe noch näher beschrieben (vgl. Abschn. 5.).

Dagegen lassen sich die Tolyl- bzw. Anisyl-Komplexe $Pd(PPh_3)_2(C_6H_4-p-CH_3)Cl$ 1e und $Pd(PPh_3)_2-(C_6H_4-p-OCH_3)Cl$ 1f quantitativ durch Halogenaustausch mit Tetrabutylammoniumchlorid aus den Iodderivaten darstellen, welche schon bei Raumtemperatur durch oxidative Addition an $Pd(PPh_3)_4$ gebildet werden [2a,b] (Schema 3).

Schema 3.

TABELLE 1. NMR-Daten der Verbindungen 1a-f (δ in ppm, J in Hz)

3. Spektroskopie

Die Verbindungen **1a-f** und **2a,b** sind spektroskopisch und elementaranalytisch charakterisiert (Tab. 1 und Exp. Teil).

Die ${}^{31}P{}^{1}H$ -NMR-Spektren von **1a**-**f** enthalten jeweils ein einzelnes Singulett und bestätigen damit die trans-Geometrie der Komplexe. In den gemischten Komplexen $Pd(PPh_3)[PPh_2(C_6H_4-p-X)](Ph)Cl$ (3e,f; X = CH₃O, CH₃) sind die Phosphorkerne chemisch und magnetisch nicht äquivalent: Es werden Dubletts beobachtet, die man als Mittelteil eines AB-Spinsystems deutet. Die für trans-Isomere erwartete große ²J(PP)-Kopplung [10] macht die äußeren Signale des AB-Systems so klein, daß diese nicht mehr beobachtet werden [11]. Im ¹H-NMR-Spektrum der Verbindungen **1a-f** sind die Signale der direkt palladiumgebundenen Arylprotonen deutlich zu höherem Feld verschoben. Die beobachteten Resonanzen sind für den jeweiligen Arylrest charakteristisch und werden durch unterschiedliche in trans-Stellung befindliche Halogenide (X = Cl, I) kaum verschoben. Die ¹H-NMR-Signale der Arylprotonen sind von den Phenylsignalen des PPh₂-Liganden gut separiert und eignen sich deshalb besonders gut für die Beobachtung von Liganden-Austauschprozessen (vgl. Abschn. 5.). Im ${}^{13}C{}^{1}H{}$ -NMR-Spektrum der Verbindungen 1a-f zeigt sich deutlich der elektronische Einfluß des in para-Stellung befindlichen Substituenten. So wird die Resonanz des direkt am Pd gebundenen ipso-C-Atoms umso mehr zu tieferem Feld verschoben, je stärker elektronenziehend der Ringsubstituent ist. In der Serie von Komplexen beggenet man daher ausgehend von $1f(4-CH_3O)$ bis zu 1a $(4-NO_2)$ einer starken Tieffeld-Verschiebung von bis zu 30 ppm für das ipso-C-Atom (Tab. 1).

		1a 4-NO ₂	1 ь 4-СНО	1c 4-CN	1d 4-H	1e 4-CH ₃	1f 4-CH ₃ O
H-NMR							
o-H' _{Ar-Pd}	δ	6.86 (dt)	6.91 (dt)	6.80 (dt)	6.61 (dt)	6.43 (dt)	6.40 (dt)
	$^{3}J(\mathrm{H}_{o}^{\prime}\mathrm{H}_{m}^{\prime})$	8.5	7.9	8.3	7.9	7.9	8.6
	$4_{J(PH'_{o})}$	1.2	≤ 1.0	≤ 1.0	1.8	1.8	1.8
$m-H'_{Ar-Pd}$	δ	7.00 (d)	6.65 (d)	6.41 (d)	6.22 (t)	6.08 (d)	5.91 (d)
<i>p</i> -H' _{Ar-Pd}	δ	_	9.52 (s, CHO)	-	6.36 (t)	1.93 (s, CH ₃)	3.49 (s, CH ₃ O)
	$^{3}J(\mathrm{H}_{m}^{\prime}\mathrm{H}_{p}^{\prime})$	-	-	-	7.3	-	-
¹³ C{ ¹ H}-NMI	र						
i-C' _{Ar-Pd}	δ	172.5 (t)	171.8 (t)	168.0 (t)	154.0 (t)	147.7 (t)	141.6 (t)
	$^{2}J(PC_{i}^{\prime})$	4.6	4.6	4.6	4.2	3.7	4.6
³¹ P{ ¹ H}-NMF	2						
	δ	24.2 (s)	24.3 (s)	24.2 (s)	24.2 (s)	23.7 (s)	23.9 (s)

In den NMR-Spektren von 2a,b treten wegen der fixierten cis-Geometrie der Chelat-Liganden doppelte Signalsätze auf. So werden im ³¹P{¹H}-NMR-Spektrum zwei Dubletts mit gleicher Kopplungskonstante beobachtet, von denen das bei tieferem Feld erscheinende dem zum Chloro-Liganden trans-ständigen, das bei höherem Feld erscheinende dem cis-ständigen Phosphoratom zuzuordnen ist [12,7a]. Die Protonensignale der palladiumgebundenen Phenylgruppen sind wieder zu höherem Feld verschoben, während die Phenylprotonen der Chelatliganden wie bei den Verbindungen 1a-f bei höheren chemischen Verschiebungen erscheinen. Im ¹³C(¹H)-NMR-Spektrum tauchen die Signale der direkt am Palladium gebundenen ipso-C-Atome bei tiefem Feld auf, wobei die ${}^{2}J(PC)$ -Kopplung zu den trans-ständigen P-Atomen 130 Hz (2a) bzw. 127 Hz (2b) beträgt.

Die Massenspektren (FAB-MS in *p*-Nitrobenzylalkohol) von **1a-f** und **2a,b** zeigen $[M^+ - Ci]$ — Abspaltung von Chlor vom Mutter-Ion — als massenhöchste Fragmente, typisch für FAB. Daneben treten Signale auf, die einer Abspaltung von Pd-ständigem Aryl plus Chlor entsprechen. Während für **1a-f** die Abspaltung von PPh₃ massenspektroskopisch erfaßbar ist, wird ein Verlust der Chelatliganden aus **2a,b** nicht beobachtet.

4. Strukturchemie

cis-[1,3-Bis(diphenylphosphino)propan]chloro(phenyl)palladium(II) (2b) kristallisiert aus Methylenchlorid, das mit dem dreifachen Volumen Hexan überschichtet war, in blaßgelben Quadern in der Raumgruppe $P2_1/n$ (International Tables of Crystallography, Nr. 14 [13a]). Abbildung 1 zeigt die Molekülstruktur der Verbindung.

Die Koordinationsgeometrie am Palladium ist nahezu quadratisch planar (Winkelsumme 360.4°). Die beiden Phosphoratome des Chelatphosphans dppp sind erwartungsgemäß *cis*-ständig zueinander gebunden, ebenfalls der Phenylring C51–C56 und das Chloratom Cl1. Somit sind beide Atome jeweils *trans*-ständig zu einem Phosphoratom. Die gefundene Asymmetrie der Phosphor-Palladium-Abstände ist durch die unterschiedlichen *trans*-Einflüsse des Chloro- und des σ -C-Liganden bedingt.

Der in **2b** gefundene Pd-Cl-Abstand stimmt mit 237.2 pm gut mit den Daten vergleichbarer Verbindungen überein, die ebenfalls Chloro-Liganden in *trans*-Position zu Phosphor tragen (PdCl₂(dppe) **a** [15a], d_{Pd-Cl} (mittl.) = 235.9 pm; PdCl₂(dppp) **b** [15a], d_{Pd-Cl} (mittl.) = 235.45 pm; Pd[(η^6 -C₆H₅)Cr(CO)₃]Cl(dppe) **c** [15b], d_{Pd-Cl} = 235.9 pm; Pd(CHCl₂)Cl(dppe) **d** [9], d_{Pd-Cl} = 235.6 pm). Die korrespondierenden Pd-P-Ab-

Abb. 1. PLATON-Darstellung [14] der Kristall- und Molekülstruktur von 2b. Die thermischen Schwingungsellipsoide entsprechen 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungsabstände [pm] und -winkel [°] von 2b: Pd(1)-P(1) 223.85(5), Pd(1)-P(2) 235.04(5), Pd(1)-C(51) 208.1(2), Pd(1)-Cl(1) 237.23(5), P(2)-Pd(1)-P(1)96.70(2), C(51)-Pd(1)-P(1) 87.53(6), Cl(1)-Pd(1)-P(2) 87.13(2), Cl(1)-Pd(1)-C(51) 89.04(5).

stände betragen in 2b 223.9, in a (mittl.) 223.0, in b (mittl.) 224.7, in c 222.3 und in d 223.2 pm. Auch der P1-Pd-P2-Winkel (2b 96.7°; b 90.6°) zeigt gute Übereinstimmung, wobei hier aufgrund des Unterschiedes zu dppe im sterischen Anspruch nur der Vergleich von dppp-tragenden Systemen sinnvoll erscheint. Der Abstand Pd-C51 entspricht mit 208.1 pm dem erwarteten Wert eines σ_{i} gebundenen Kohlenstoffatoms transständig zu Phosphor (c 205.6 pm; d 210.5 pm). Die korrespondierenden trans-Pd-P-Bindungslängen betragen in 2b 235.0 pm (c 234.0 pm; d 230.9 pm). Die beobachteten Unterschiede, wie z.B. im P-Pd-P-Winkel, sind größtenteils auf den unterschiedlichen Raumanspruch der Chloro- und Phenyl-Liganden und damit zwangsläufig auch auf Kristallpackungseffekte zurückzuführen.

5. Stabilität

Die Temperaturstabilität der Phosphan-Komplexe 1a-f wurde durch *in situ-*¹H- und ³¹P-NMR-Messungen in CDCl₃ als Lösungsmittel untersucht. Zur weiteren Charakterisierung wurde die FAB-Massenspektroskopie als zusätzliche Methode herangezogen.

Werden die akzeptorsubstituierten Arylpalladium-(II)-Komplexe 1a-c (4-NO₂, 4-CHO, 4-CN) und der Komplex 1d (4-H) mehrere Stunden in siedendem CD-Cl₃ (63°C) erhitzt, so sind ¹H-NMR-spektroskopisch keine sichtbaren Veränderungen beobachtbar. In höher siedenden Lösungsmitteln wie Toluol, DMF oder Dimethylacetamid kommt es erst bei 120°C zu allmählicher Zersetzung unter Pd-Abscheidung. Liganden-Umlagerungen am Pd-Zentrum sind bei höheren Temperaturen nur in geringem Maße festzustellen und meist dominiert von unübersichtlichen Abbauprozessen. Die Komplexe **1a**-d sind also in Lösung recht konstitutionsstabile Verbindungen, bevor sie bei höheren Temperaturen ($T \ge 120^{\circ}$ C) thermisch zersetzt werden.

Dagegen zeichnen sich die donorsubstituierten Derivate 1e,f (4-CH₃, 4-CH₃O) durch ausgeprägte Instabilität in Lösung aus. Werden sie bei 60°C in CDCl₃ erhitzt, so findet ein *regiospezifischer Austausch* zwischen den palladiumgebundenen Aryl- und den Phenylgruppen des Phosphans statt. Im Falle von trans-Pd(P-Ph₃)₂(C₆H₄-p-OCH₃)Cl (1f) wandert eine Phenyl-Gruppe eines PPh₃-Liganden zum Metall und im

TABELLE 2. Kristallographische Parameter des Palladium-Komplexes 2b

Kristallparameter			
Empirische Formel	$C_{33}H_{31}ClP_2Pd$		
Formelmasse (a.m.u.)	631.43		
Kristallfarbe und -form	blaßgelbe Quader		
Meßtemperatur (°C)	-80±1°C		
Auslöschungen	h0l(h+l=2n+1)		
-	0k0(k=2n+1)		
Raumgruppe	$P2_1/n$ (monoklin)		
	Int. Tab. Nr. 14,		
	gemessen in Cmcm (63)		
a (pm)	1175.8 (3)		
b (pm)	1831.6 (1)		
c (pm)	1420.5 (4)		
α (°)	90		
β (°)	114.30(1)		
γ (°)	90		
$V(10^6 \text{ pm}^3)$	2788		
$\rho (g \text{ cm}^{-3})$	1.5042		
F ₀₀₀	1288		
λ (pm)	71.07		
Meßparameter			
Meßmodus/Scanzeit (s)	w-scan		
Scanbreite (°)	$(1.20 + 0.30 \cdot tg\theta) \pm 25\%$		
gemessene Reflexe	8130		
Meßbereich (°)/ h, k, l	$1 < \theta < 25$		
	(-14/14)(0/30)(-21/21)		
unabhängige Reflexe	4667		
zur Verfeinerung benutzt	4667 mit $I > 0.01 \cdot \sigma(I)$		
Reflex/Parameter-Verhältnis	10.2		
Verfeinerung			
Extinktionskorrektur	keine		
Zersetzung	keine		
Absorptionskorrektur/ μ (cm ⁻¹)	empirisch/8.88		
verfeinerte Parameter	458		
shift/error	< 0.0001		
$R = \Sigma(F_{o} - F_{c}) / \Sigma F_{o} $	0.0289		
$R_{\rm w} = [\Sigma w (F_{\rm o} - F_{\rm c})^2 / \Sigma w F_{\rm o} ^2]^{1/2}$	0.0147		
Gewichtung	nach Tukey and Prince [25],		
	2 Parameter: 0.435, -0.381		
Restelektronendichte (e $Å^{-3}$)	+0.53/-0.674		
	· · · · · · · · · · · · · · · · · · ·		

Abb. 2. ¹H-NMR-Spektrum (400 MHz) von trans-Pd(PPh₃)₂(C₆H₄p-OCH₃)Cl (1f) in CDCl₃: (A) bei 20°C; (B) nach 20 min, (C) nach 1 h, (D) nach 2 h und (E) nach 3.5 h bei 60°C. (•) Zur Standardisierung der chemischen Verschiebungen wurde das Solvens CDCl₃ mit CH₂Cl₂ dotiert. Gerät: JEOL-JMX-GX 400.

Gegenzug die *p*-Anisyl-Gruppe zum entsprechenden P-Atom. Der Verlauf der Isomerisierung von 1f läßt sich ¹H-NMR-spektroskopisch verfolgen und ist in Abb. 2 dargestellt.

Die Resonanzen bei 6.40 (dt, o-H), 5.91 (d, m-H) und 3.49 (s, CH₃O) ppm in Abb. 2-A gehören zur Anisyl-Gruppe von 1f. Bei kontinuierlichem Erhitzen nehmen die Intensitäten dieser Signale ab und neue bei 6.61 (dt), 6.36 (t) und 6.21 (t) wachsen heraus (Abb. 2-B-E). Diese lassen sich eindeutig den Protonen-Signalen einer palladiumgebundenen Phenylgruppe zuordnen, da die chemischen Verschiebungen und Kopplungskonstanten dieser Signale übereinstimmen mit den entsprechenden palladiumständigen Phenylgruppen in den Komplexen trans-Pd(PPh₃)₂(Ph)Cl (1d) und trans- $Pd[PPh_2(C_6H_4-p-OCH_3)]_2(Ph)Cl.$ Darüberhinaus nehmen gleichzeitig drei weitere Resonanzen bei 7.43 (m), 6.80 (d) und 3.80 (s) ppm an Intensität zu (Abb. 2-B-E). Diese stimmen mit den Frequenzen der ortho-Protonen der beiden Phenylgruppen und der meta- und Methoxyprotonen der Anisylgruppe am koordinierten PPh₂(C₆H₄-*p*-OCH₃) im Komplex *trans*-Pd[PPh₂-(C₆H₄-*p*-OCH₃]₂(Ph)Cl (**4f**) überein. Dies spricht für die Bildung des PPh₂(C₆H₄-*p*-OCH₃)-Liganden während des Austauschprozesses. Nach *ca.* 3 h bei 60°C bleiben die relativen Intensitäten der Signale konstant. Durch Messung der Peakintensitäten der Methoxyprotonen in Abb. 1-E läßt sich ein Umlagerungsgrad, d.h. das Verhältnis von P-Anisyl zu Pd-Anisyl im Gleichgewicht, für die Isomerisierungsreaktion ermitteln; er beträgt 96/4. In analoger Weise unterliegt *trans*-Pd(PPh₃)₂(C₆H₄-*p*-CH₃)Cl (**1e**) einem beidseitigen Aryl-Aryl-Austausch, wobei im Gleichgewicht der Umlagerungsgrad von 90/10 bei 60°C erreicht wird.

Die ¹H-NMR-Untersuchungen lassen darauf schließen, daß die Isomerisierungsprodukte von 1e,f Komplexe der Formel *trans*-Pd(PPh₃)[PPh₂(C₆H₄-*p*-Y)](Ph)Cl (3e,f; Y = CH₃, CH₃O) sind. Diese primären Austauschprodukte unterliegen jedoch aufgrund der labil am Palladium(II)-Zentrum gebundenen Phosphane [11,16] einem schnellen, intermolekularen Phosphan-Scrambling, woraus weitere Folgeprodukte resultieren. In den ¹H-, ³¹P{¹H}-NMR-Spektren — wie auch in den Massenspektren — werden daher neben 3e bzw. 3f die Spezies Pd[PPh₂(C₆H₄-*p*-Y)]₂(Ph)Cl (4e bzw. 4f; Y = CH₃ bzw. CH₃O) und Pd(PPh₃)₂(Ph)Cl (1d) ebenfalls detektiert (Schema 4).

Die in der Produktmischung von 1f vorliegenden Komplexe 3f, 4f und 1d zeigen sich im Massenspektrum als Fragmente Pd(PPh₃)[PPh₂(C₆H₄-p-O-CH₃)](Ph), Pd[PPh₂(C₆H₄-p-OCH₃)]₂(Ph) und Pd(P-Ph₃)₂(Ph) bei m/e = 737, 767 bzw. 707. Unter identischen Aufnahmebedingungen wird für die Ausgangsverbindung 1f nur das Fragment Pd(PPh₃)₂-(C₆H₄-p-OCH₃) bei m/e = 737 beobachtet, was zeigt, daß während der massenspektroskopischen Messung kein Aryl-Austausch stattfindet. Im Massenspektrum der Produktmischung von 1e werden entsprechend die korrespondierenden Fragmente von 3e, 4e und 1d beobachtet. Weitere Fragmentierungen als Belege für die

Isomerisierungsprodukte sind im Experimentalteil aufgeführt.

Darüberhinaus gibt es Hinweise, daß die Produkte **3e,f** und **4e,f** weiteren Austauschprozessen unterworfen sind, bei denen Komplexe mit koordiniertem PPh- $(C_6H_4-p-CH_3)_2$ bzw. PPh $(C_6H_4-p-OCH_3)_2$ gebildet werden. So sind im ¹H-NMR-Spektrum der Produktmischung von **1f** (Abb. 1-E) ein weiteres kleines Dublett bei 6.77 ppm, überlappt mit dem Dublett bei 6.80 ppm, und ein Singulett bei 3.79 ppm zu erkennen. Diese Resonanzen können aufgrund identischer chemischer Verschiebungen mit dem Komplex Pd[PPh $(C_6H_4-p-O-CH_3)_2]_2$ (Ph)Cl den *meta*- und Methoxyprotonen der Anisylgruppe im koordinierten PPh $(C_6H_4-p-OCH_3)_2$ zugeordnet werden. Entsprechende Signale wurden auch im ¹H-NMR-Spektrum der Isomerisierungsprodukte von **1e** gefunden.

Der bei donorsubstituierten Arylpalladium(II)-chloriden bereits bei niedrigen Temperaturen begünstigte Aryl-Aryl-Austausch erklärt, warum bei der Umsetzung von Pd(PPh₃)₄ mit 4-Chlortoluol bzw. 4-Chloranisol nicht die Komplexe 1e bzw. 1f entstehen, sondern die umgelagerten Folgeprodukte 1d und 3e bzw. 3f erhalten werden. Die elektronenreichen Vertreter der Chloraromaten werden zwar durch Insertion von Pd⁰ in die C-Cl-Bindung aktiviert, aber die anschließ ende Isomerisierung im Additionskomplex führt sofort zur Bildung der stabileren Phenylpalladium-Spezies. Der in der Reaktion mit Pd(PPh₃)₄ vorhandene Überschuß an freiem Triphenylphosphan führt dazu, daß durch intermolekulares Phosphan-Scrambling bevorzugt der Komplex Pd(PPh₃)₂(Ph)Cl (1d) gebildet wird.

Während einseitige Arylgruppen-Wanderungen vom koordinierten Phosphan zum Metallzentrum in palladiumvermittelten Reaktionen in der Literatur gut belegt sind [17], ist ein beidseitiger Aryl-Aryl-Austausch bisher nur von den leichter zugänglichen Iodderivaten des Typs Pd(PPh₃)₂(Ar)I bekannt [18]. Die verwandte oxidative Addition von Triarylphosphanen an niedervalente Übergangsmetallkomplexe ist vor allem für Rh^I und Pd⁰ gut untersucht [2c,19].

6. Experimenteller Teil

Alle Verbindungen wurden unter Schutzgas (Ar) und unter Verwendung getrockneter Lösungsmittel dargestellt. $Pd(PPh_3)_4$ [20], $Pd[P(p-Tol)_3]_3$ [21a] und die Chelatphosphan-Komplexe $Pd(dppe)_2$ bzw. Pd(dppp)₂ [1a,21b] wurden nach Literaturvorschriften erhalten. Die Pd^0 -Phosphan-Komplexe des Dibenzylidenacetons $Pd(PPh_3)_2(dba)$, Pd(dppe)(dba) und Pd(dppp)(dba) wurden aus $Pd(dba)_2$ und den entsprechenden Phosphanen dargestellt [9]. Die verwendeten Phosphane und Chloraromaten wurden großteils käuflich erworben und ohne weitere Reinigung direkt eingesetzt. Die Messung der NMR- (JEOL-JMX-GX 400), der Massen- (Finnigan MAT90), und der IR-Spektren (Perkin-Elmer 1600 Series) sowie die Bestimmung der Elementaranalysen und der Einkristall-Röntgenstrukturanalyse (Enraf-Nonius CAD4) erfolgten im eigenen Institut.

In den NMR-Spektren sind die ¹H- und ¹³C-Signale der direkt am Palladium gebundenen Arylgruppen zur besseren Unterscheidung als H' bzw. C' gekennzeichnet.

Ausgewählte Parameter zur Kristallstrukturbestimmung der Verbindung **2b** sind in Tab. 2 zu finden. Die Datenreduktion erfolgte mit dem Programmsystem sDP [22]. Die Atomformfaktoren für Neutralatome wurden Lit. 13b entnommen und die anomale Dispersion wurde berücksichtigt [13c]. Die Rechnungen zur Strukturermittlung erfolgten im Programmsystem STRUX-IV [23], CRYSTALS [24] und PLATON [14] auf einem Rechner des Typs MicroVAX 3100. Weitere Einzelheiten zur Kristallstrukturbestimmung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-58401, der Autorennamen und des Zeitschriftenzitats angefordert werden.

6.1. Synthese der Komplexe 1a-c

Variante A

4.62 g (4.00 mmol) $Pd(PPh_3)_4$ werden in 50 ml Toluol suspendiert, mit fünf Äquivalenten (20 mmol) Chloraromat versetzt und 12 h bei 110°C erhitzt. Zwischen 60 und 90°C geht $Pd(PPh_3)_4$ mit orangegelber Farbe in Lösung, und nach *ca*. 20 bis 40 Minuten beginnt ein farbloser Niederschlag aus der Lösung auszufallen. Das Lösungsmittel wird i. Vak. entfernt, und der feste Rückstand wird dreimal mit je 50 ml Diethylether gewaschen, um überschüssiges Arylchlorid und freigesetztes PPh_3 zu entfernen. Das i. Vak. getrocknete Rohprodukt wird in Methylenchlorid gelöst, über Celite[®] filtriert, um Spuren elementaren Palladiums abzutrennen, und durch Überschichten mit Diethylether, n-Hexan oder Methanol zur Kristallisation gebracht.

Variante B

1.56 g (1.80 mmol) Pd(PPh₃)₂(dba) und 0.48 g (1.80 mmol) PPh₃ werden in 30 ml Toluol gelöst, mit fünf Äquivalenten (9 mmol) Chloraromat versetzt und 3 h bei 110°C erhitzt. Dabei hellt sich die anfänglich tiefrote Färbung der Lösung nach orangegelb auf. Nach Entfernen des Lösungsmittels i. Vak. wird der Rückstand dreimal mit je 40 ml Diethylether ge-

waschen, getrocknet und aus Methylenchlorid/Diethylether oder Methylenchlorid/n-Hexan umkristallisiert.

6.1.1. trans-Bis(triphenylphosphan)chloro(4-nitrophenyl)palladium(II) (1a)

Ausb.: 2.52 g (80% d. Th., Variante A), mikrokristalline, farblose Nadeln.

Elementaranalyse: Gef.: C, 64.35; H, 4.64; Cl, 4.83; P, 8.27; N, 1.70; O, 3.90%. $C_{42}H_{34}ClP_2PdNO_2$ (788.54) ber.: C, 63.97; H, 4.35; Cl, 4.50; P, 7.86; N, 1.78%; O, 4.06%. ¹H-NMR (400 MHz, 25°C, CDCl₃): $\delta = 7.54$ (12H, m, $o-H_{Ph}$, ³ $J(H_mH_o) = 7.3$ Hz); 7.35 (6H, t, $p-H_{Ph}$, ³ $J(H_mH_p) = 7.3$ Hz); 7.26 (12H, t, $m-H_{Ph}$, ³ $J(H_oH_pH_m) = 7.3$ Hz); 7.00 (2H, d, m-H', ³ $J(H'_oH'_m) = 8.5$ Hz); 6.86 (2H, dt, o-H', ³ $J(H'_mH'_o) = 8.5$, ⁴J-(PH') = 1.2 Hz). ¹³C{¹H}-NMR (100.53 MHz, 25°C, CDCl₃): $\delta = 172.5$ (t, *i*-C', ²J(PC') = 4.6 Hz); 136.2 (t, o-C', ³J(PC') = 5.1 Hz); 120.7 (s, m-C'); 143.6 (s, p-C'); 130.4 (t, *i*-C_{Ph}, ¹J(PC) = 23.0 Hz); 134.5 (t, $o-C_{Ph}$, ²J(PC) = 6.4 Hz); 128.1 (t, $m-C_{Ph}$, ³J(PC) = 5.1 Hz); 130.3 (s, $p-C_{Ph}$). ³¹P{¹H}-NMR (161.85 MHz, 25°C, CDCl₃): $\delta = 24.2$ (s). FAB-MS (bez. auf ³⁵Cl und ¹⁰⁶Pd): m/e = 752 [M⁺ - Cl], 665 [Pd(PPh_3)₂Cl⁺], 630 [Pd(P-Ph_3)₂⁺], 384 [PPh_3(C₆H₄·p-NO₂)⁺], 368 [Pd(PPh_3)⁺].

6.1.2. trans-Bis(triphenylphosphan)chloro(4-formylphenyl)palladium(II) (1b)

Ausb.: 2.31 g (75% d. Th., Variante A), mikrokristalline, farblose Nadeln (onset 226°C, TG-MS).

Elementaranalyse: Gef.: C, 66.11; H, 4.61; Cl, 5.75; P, 8.06; O, 1.87%. $C_{43}H_{35}ClP_2PdO \cdot 0.15CH_2Cl_2$ (784.29) ber.: C, 66.08; H, 4.54; Cl, 5.87; P, 7.90; O, 2.04%. ¹H-NMR (400 MHz, 25°C, CDCl_3): $\delta = 9.52$ (1H, s, CHO); 7.52 (12H, m, o-H_{Ph}, ³ $J(H_mH_o) = 7.3$ Hz); 7.33 (6H, t, p-H_{Ph}, ³ $J(H_mH_p) = 7.3$ Hz); 7.24 (12H, t, m-H_{Ph}, ³ $J(H_oH_pH_m) = 7.3$ Hz); 6.91 (2H, dt, o-H', ³ $J(H'_mH'_o) = 7.9$, ⁴ $J(PH') \le 1$ Hz); 6.65 (2H, d, m-H', ³ $J(H'_oH'_m) = 7.9$ Hz,). ¹³C{¹H}-NMR (100.53 MHz, 25°C, CDCl_3): $\delta = 192.7$ (s, CHO); 171.8 (t, *i*-C', ²J(PC') = 4.6 Hz); 136.8 (t, o-C', ³J(PC') = 4.6 Hz); 127.4 (s, m-C'); 131.2 (s, p-C'); 130.6 (t, *i*-C_{Ph}, ¹J(PC)= 22.9 Hz); 134.5 (t, o-C_{Ph}, ²J(PC) = 6.1 Hz); 128.0 (t, m-C_{Ph}, ³J(PC) = 5.3 Hz); 130.1 (s, p-C_{Ph}). ³¹P{¹H}-NMR (161.85 MHz, 25°C, CDCl_3): $\delta = 24.3$ (s). FAB-MS (bez. auf ³⁵Cl und ¹⁰⁶Pd): m/e = 735 [M⁺ - Cl], 630 [Pd(PPh_3)_2⁺], 368 [Pd(PPh_3)^+], 367 [PPh_3(C_6H_4-p-CHO)^+], 339 [PPh_4^+].

6.1.3. trans-Bis(triphenylphosphan)chloro(4-cyanophenyl)palladium(II) (1c)

Ausb.: 2.98 g (97% d. Th., Variante A), mikrokristalline, farblose Nadeln (onset 247°C, TG-MS). Elementaranalyse: Gef.: C, 66.92; H, 4.47; Cl, 4.81; P, 8.00; N, 1.77%. $C_{43}H_{34}ClP_2PdN$ (768.55) ber.: C, 67.20; H, 4.46; Cl, 4.61; P, 8.06; N, 1.82%. IR (cm⁻¹, PE): 292vs (ν (Pd-Cl)), 227s (ν (Pd-P)). ¹H-NMR (400 MHz, 25°C, CDCl₃): δ = 7.52 (12H, m, o-H_{Ph}, ³*J*(H_mH_o) = 7.3 Hz); 7.36 (6H, t, p-H_{Ph}, ³*J*(H_mH_p) = 7.3 Hz); 7.26 (12H, t, m-H_{Ph}, ³*J*(H_oH_PH_m) = 7.3 Hz); 6.80 (2H, dt, o-H', ³*J*(H'_mH'_o) = 8.3, ⁴*J*(PH') \leq 1 Hz); 6.41 (2H, d, m-H', ³*J*(H'_oH'_m) = 8.3 Hz). ¹³C{¹H}-NMR (100.53 MHz, 25°C, CDCl₃): δ = 120.1 (s, CN); 168.0 (t, *i*-C', ²*J*(PC') = 4.6 Hz); 136.8 (t, o-C', ³*J*(PC') = 4.6 Hz); 129.5 (s, m-C'); 104.6 (s, p-C'); 130.4 (t, *i*-C_{Ph}, ¹*J*(PC) = 22.9 Hz); 134.5 (t, o-C_{Ph}, ²*J*(PC) = 6.1 Hz); 128.1 (t, m-C_{Ph}, ³*J*(PC) = 5.3 Hz); 130.2 (s, p-C_{Ph}). ³¹P{¹H}-NMR (161.85 MHz, 25°C, CDCl₃): δ = 24.2 (s). FAB-MS (bez. auf ³⁵Cl und ¹⁰⁶Pd): m/e = 732 [M⁺- Cl], 665 [Pd(PPh_3)₂Cl⁺], 630 [Pd(PPh_3)₂⁺], 368 [Pd(PPh_3)⁺], 364 [PPh_3(C₆H₄-p-CN)⁺].

6.2. trans-Bis(triphenylphosphan)chloro(phenyl)palladium(II) (1d)

Variante A

3.80 g (3.29 mmol) $Pd(PPh_3)_4$ werden in 40 ml Chlorbenzol suspendiert und 6 h unter Rückfluß (135– 140°C) erhitzt. Nach Entfernen des überschüssigen Chlorbenzols i. Vak. wird der Rückstand dreimal mit je 40 ml Diethylether gewaschen, getrocknet und aus Methylenchlorid/n-Hexan, Methylenchlorid/Diethylether oder Methylenchlorid/Methanol umkristallisiert. Man erhält 2.05 g (84% d. Th.) 1c als farblosen, mikrokristallinen Feststoff (onset 261°C, TG-MS).

Variante B

1.47 g (2.56 mmol) Pd(dba)₂, gelöst in 40 ml Chlorbenzol, werden mit 2.02 g (7.70 mmol) PPh₃ versetzt und 2 h bei Raumtemperatur gerührt. Dabei schlägt die Farbe der Lösung nach kurzer Zeit nach rotorange um. Die Lösung wird über eine mit ausgeheiztem Celite belegte Fritte filtriert und anschließend 2 h unter Rückfluß (140°C) erhitzt. Nach Entfernen des Chlorbenzols i. Vak. wird wie in Variante A aufgearbeitet. Man erhält 1.40 g (74% d. Th.) 1c neben geringen Mengen an *trans*-Pd(PPh₃)₂Cl₂, das in Methylenchlorid schwer löslich ist.

Elementaranalyse: Gef.: C, 67.43; H, 4.84; Cl, 4.94; P, 8.50%. $C_{42}H_{35}ClP_2Pd$ (743.54) ber.: C, 67.85; H, 4.74; Cl, 4.77; P, 8.33%. ¹H-NMR (400 MHz, 25°C, CDCl₃): $\delta = 7.48$ (12H, m, o-H_{Ph}, ³ $J(H_mH_o) = 7.3$ Hz); 7.31 (6H, t, p-H_{Ph}, ³ $J(H_mH_p) = 7.3$ Hz); 7.22 (12H, t, m-H_{Ph}, ³ $J(H_oH_pH_m) = 7.3$ Hz); 6.61 (2H, dt, o-H', ³ $J(H'_mH'_o) = 7.9$, ⁴J(PH') = 1.8 Hz); 6.36 (1H, t, p-H', ³ $J(H'_mH'_p) = 7.3$ Hz); 6.22 (2H, t, m-H', ³ $J(H'_oH'_pH'_m)$ = 7.3 Hz). ¹³C{¹H}-NMR (100.53 MHz, 25°C, CDCl₃): $\delta = 154.0$ (t, *i*-C', ²*J*(PC') = 4.2 Hz); 136.5 (t, *o*-C', ³*J*(PC') = 4.6 Hz); 127.6 (s, *m*-C'); 121.7 (s, *p*-C'); 131.3 (t, *i*-C_{Ph}, ¹*J*(PC) = 22.1 Hz); 134.6 (t, *o*-C_{Ph}, ²*J*(PC) = 6.5 Hz); 127.9 (t, *m*-C_{Ph}, ³*J*(PC) = 5.0 Hz); 129.7 (s, *p*-C_{Ph}). ³¹P{¹H}-NMR (161.85 MHz, 25°C, CDCl₃): δ = 24.2 (s). FAB-MS (bez. auf ³⁵Cl und ¹⁰⁶Pd): *m*/*e* = 707 [M⁺ - Cl], 630 [Pd(PPh₃)⁺₂], 368 [Pd(PPh₃)⁺], 339 [PPh₄⁺], 262 [PPh₃⁺].

6.3. Synthese der Komplexe 1e,f

1.80 g (2.12 mmol) Pd(PPh₃)₂(C₆H₄-*p*-CH₃)I bzw. 1.73 g (2.00 mmol) Pd(PPh₃)₂(C₆H₄-*p*-OCH₃)I, dargestellt aus Pd(PPh₃)₄ und dem entsprechenden Iodaromaten bei 20°C [2a,b], werden in 40 ml Methylenchlorid gelöst. Unter Eiskühlung wird eine Lösung von 4 g (13.52 mmol) Tetrabutylammoniumchlorid in 10 ml Methylenchlorid zügig hinzugetropft und anschließend noch 10 min bei 0°C gerührt. Das Lösungsmittel wird i. Vak. entfernt und der Rückstand dreimal mit je 40 ml Methanol gewaschen, um überschüssiges Tetrabutylammoniumhalogenid abzutrennen. Nach erneutem, zweimaligen Waschen mit je 30 ml Diethylether werden die Rohprodukte getrocknet und aus Methylenchlorid/Diethylether umkristallisiert.

6.3.1. trans-Bis(triphenylphosphan)chloro(4-methylphenyl)palladium(II) (1e)

Ausb.: 1.10 g (68% d. Th.), mikrokristalliner, farbloser Feststoff.

Elementaranalyse: Gef.: C, 68.02; H, 4.99; Cl, 4.93; P, 8.30%. $C_{43}H_{37}ClP_2Pd$ (757.57) ber.: C, 68.18; H, 4.92; Cl, 4.68; P, 8.18%. ¹H-NMR (400 MHz, 25°C, CDCl₃): $\delta = 7.49$ (12H, m, o-H_{Ph}, ³J(H_mH_o) = 7.3 Hz); 7.32 (6H, t, p-H_{Ph}, ³J(H_mH_p) = 7.3 Hz); 7.23 (12H, t, m-H_{Ph}, ³J(H_oH_pH_m) = 7.3 Hz); 6.43 (2H, dt, o-H', ³J(H'_mH'_o) = 7.9, ⁴J(PH') = 1.8 Hz); 6.08 (2H, d, m-H', ³J(H'_oH'_m) = 7.9 Hz); 1.93 (3H, s, CH₃). ¹³C{¹H}-NMR (100.53 MHz, 25°C, CDCl₃): $\delta = 20.2$ (s, CH₃); 147.7 (t, *i*-C', ²J(PC') = 3.7 Hz); 136.0 (t, o-C', ³J(PC') = 5.1 Hz); 128.7 (s, m-C'); 130.8 (s, p-C'); 131.3 (t, *i*-C_{Ph}, ¹J(PC) = 22.5 Hz); 134.7 (t, o-C_{Ph}, ²J(PC) = 6.0 Hz); 127.8 (t, m-C_{Ph}, ³J(PC) = 5.1 Hz); 129.6 (s, p-C_{Ph}). ³¹P{¹H}-NMR (161.85 MHz, 25°C, CDCl₃): $\delta = 23.7$ (s). FAB-MS (bez. auf ³⁵Cl und ¹⁰⁶Pd): m/e = 721[M⁺- Cl], 630 [Pd(PPh_3)⁺], 368 [Pd(PPh_3)⁺], 353 [P-Ph₃(C₆H₄-p-CH₃)⁺].

6.3.2. trans-Bis(triphenylphosphan)chloro(4-methoxy-phenyl)palladium(II) (1f)

Ausb.: 1.03 g (67% d. Th.), mikrokristalliner, farbloser Feststoff.

Elementaranalyse: Gef.: C, 66.16; H, 4.88; Cl, 4.45; P, 7.50; O, 2.16%. $C_{43}H_{37}ClP_2PdO$ (773.57) ber.: C, 66.76; H, 4.82; Cl, 4.58; P, 8.01; O, 2.07%. ¹H-NMR

³*J*(H_mH_o) = 7.4 Hz); 7.31 (6H, t, *p*-H_{Ph}, ³*J*(H_mH_p) = 7.4 Hz); 7.23 (12H, t, *m*-H_{Ph}, ³*J*(H_oH_pH_m) = 7.4 Hz); 6.40 (2H, dt, *o*-H', ³*J*(H'_mH'_o) = 8.6, ⁴*J*(PH') = 1.8 Hz); 5.91 (2H, d, *m*-H', ³*J*(H'_oH'_m) = 8.6 Hz); 3.49 (3H, s, CH₃O). ¹³C{¹H}-NMR (100.53 MHz, 25°C, CDCl₃): $\delta = 55.6$ (s, CH₃O); 141.6 (t, *i*-C', ²*J*(PC') = 4.6 Hz); 136.4 (t, *o*-C', ³*J*(PC') = 5.3 Hz); 114.6 (s, *m*-C'); 156.5 (s, *p*-C'); 131.7 (t, *i*-C_{Ph}, ¹*J*(PC) = 22.5 Hz); 135.0 (t, *o*-C_{Ph}, ²*J*(PC) = 6.0 Hz); 128.2 (t, *m*-C_{Ph}, ³*J*(PC) = 4.6 Hz); 130.2 (s, *p*-C_{Ph}). ³¹P{¹H}-NMR (161.85 MHz, 25°C, CDCl₃): $\delta = 23.9$ (s). FAB-MS (bez. auf ³⁵Cl und ¹⁰⁶Pd): *m*/*e* = 737 [M⁺ - Cl], 630 [Pd(PPh₃)⁺], 369 [PPh₃-(C₆H₄*p*-OCH₃)⁺], 368 [Pd(PPh₃)⁺].

6.4. trans-Bis(tri-p-tolylphosphan)chloro(4-formylphenyl)palladium(ii)

Die Verbindung kann gemäß Variante A aus $Pd[P(p-Tol)_3]_3$ und 4-Chlorbenzaldehyd dargestellt werden. Ausb.: 1.81 g (53% d. Th.), farbloser, mikrokristalliner Feststoff.

Elementaranalyse: Gef.: C, 68.61; H, 6.02; Cl, 4.81; P, 7.60; O, 2.32%. $C_{49}H_{47}ClP_2PdO$ (855.71) ber.: C, 68.78; H, 5.54; Cl, 4.14; P, 7.24; O, 1.87%. ¹H-NMR (400 MHz, 25°C, CDCl₃): $\delta = 9.52$ (1H, s, CHO); 7.36 (12H, m, *o*-H_{Tolyl}, ³*J*(H_{*m*}H_{*o*}) = 8.0 Hz); 7.00 (12H, d, *m*-H_{Tolyl}, ³*J*(H_{*o*}H_{*m*}) = 8.0 Hz); 6.84 (2H, dt, *o*-H', ³*J*(H'_{*m*}H'_{*o*}) = 8.0 Hz); 2.28 (18H, s, CH₃). ¹³C[¹H]-NMR (100.53 MHz, 25°C, CDCl₃): $\delta = 192.7$ (s, CHO); 173.2 (t, *i*-C', ²*J*(PC') = 4.6 Hz); 137.0 (t, *o*-C', ³*J*(PC') = 4.6 Hz); 127.2 (s, *m*-C'); 131.0 (s, *p*-C'); 127.7 (t, *i*-C_{Tol}, ¹*J*(PC) = 24.0 Hz); 134.5 (t, *o*-C_{Tol}, ²*J*(PC) = 6.1 Hz); 128.7 (t, *m*-C_{Tol}, ³*J*(PC) = 5.3 Hz); 140.0 (s, *p*-C_{Tol}); 21.3 (s, CH₃). ³¹P[¹H]-NMR (161.85 MHz, 25°C, CD-Cl₃): $\delta = 22.5$ (s). FAB-MS (bez. auf ³⁵Cl und ¹⁰⁶Pd): *m*/*e* = 819 [M⁺ - Cl], 714 [Pd{P(*p*-Tol)₃}²], 410 [Pd {P(*p*-Tol)₃}⁺], 395 [P(*p*-Tol)₄⁺], 368 [Pd(PPh₃)⁺], 304 [P(*p*-Tol)₃]⁺].

6.5. Synthese der Komplexe 2a,b

1.22 g (1.64 mmol) Pd(PPh₃)₂(Ph)Cl (1d) werden in 30 ml Tetrahydrofuran vorgelegt, mit 0.73 g (1.82 mmol) 1,2-Bis(diphenylphosphino)ethan (dppe) bzw. 0.75 g (1.82 mmol) 1,3-Bis(diphenylphosphino)propan (dppp) versetzt und 4 h bei Raumtemperatur gerührt. Der ausgefallene, farblose Niederschlag wird abfiltriert, dreimal mit je 30 ml Diethylether gewaschen, getrocknet und aus Methylenchlorid/n-Hexan umkristallisiert.

6.5.1. cis-[1,2-Bis(diphenylphosphino)ethan]chloro (phenyl)palladium(II) (2a)

Ausb.: 0.76 g (75% d. Th.) 2a, mikrokristalliner, farbloser Feststoff.

Elementaranalyse: Gef.: C, 60.60; H, 4.94; Cl, 7.48;

P, 9.60%. $C_{32}H_{29}CIP_2Pd \cdot 0.2CH_2Cl_2$ (634.37) ber.: C, 60.97; H, 4.67; Cl, 7.82; P, 9.77%. IR (cm⁻¹, PE): 302s $(\nu(Pd-Cl))$. ¹H-NMR (400 MHz, 25°C, CDCl₃): $\delta =$ 7.97 (4H, ddd, $o-H_{aPh}$, ${}^{3}J(PH_{o}) = 10.5$, ${}^{3}J(H_{m}H_{o}) = 7.3$, ${}^{3}J(H_{p}H_{o}) = 1.2$ Hz); 7.35–7.50 (16H, m, p-H_{aPh}, p- H_{bPh} , m-H_{aPh}, m-H_{bPh} und o-H_{bPh}); 7.31 (2H, dt, o-H', ${}^{3}J(H'_{m}H'_{o}) = 7.7$, ${}^{4}J(PH') = 2.1$ Hz); 7.04 (1H, m, p-H'); 6.73 (2H, m, m-H'); 2.47 (2H, m, CH_{2(a)}); 2.18 $(2H, m, CH_{2(b)})$. ¹³C{¹H}-NMR (100.53 MHz, 25°C, CDCl₃): $\delta = 158.9$ (d, *i*-C', trans-²J(P_bC') = 130.0 Hz); 136.0 (dd, o-C', trans- ${}^{3}J(P_{b}C') = 4.4$, cis- ${}^{3}J(P_{a}C') = 2.2$ Hz); 127.4 (dd, m-C', trans- ${}^{4}J(P_{h}C') = 8.8$, cis- ${}^{4}J(P_{a}C')$ = 1.7 Hz); 122.8 (s, p-C', trans-⁵ $J(P_bC') = 1.1$ Hz); 131.3 (d, $i-C_{aPh}$, ${}^{1}J(Pi-C_{a}) = 31.4$ Hz); 129.5 (d, $i-C_{bPh}$, ${}^{1}J(\text{P}i-\text{C}_{b}) = 34.2 \text{ Hz}); 133.4 (d, o-\text{C}_{aPh}, {}^{2}J(\text{P}o-\text{C}_{a}) = 1.1$ Hz); 133.2 (d, $o-C_{bPh}$, ${}^{2}J(Po-C_{b}) = 2.2$ Hz); 129.0 (d, $m-C_{aPh}$, ${}^{3}J(Pm-C_{a}) = 9.9$ Hz); 128.7 (d, $m-C_{bPh}$, ${}^{3}J(Pm-C_{bPh}) = 11.0$ Hz); 131.2 (d, $p-C_{aPh}$, ${}^{4}J(Pp-C_{a}) = 2.8$ Hz); 130.8 (d, $p-C_{bPh}$, ${}^{4}J(Pp-C_{b}) = 2.2$ Hz); 30.1 (dd, $C_{a}H_{2}$, ${}^{1}J(PC_{a}) = 31.7$, ${}^{2}J(PC_{a}) = 23.1$ Hz); 22.8 (dd, $C_{b}H_{2}$, ${}^{1}J(PC_{b}) = 25.9, {}^{2}J(PC_{b}) = 11.0 \text{ Hz}. {}^{31}P\{{}^{1}H\}\text{-NMR}$ (161.85 MHz, 25°C, CDCl₃): $\delta = 51.7$ (d, P_a, ²J(P_aP_b) = 28.4 Hz); 31.5 (d, P_b). FAB-MS (bez. auf ³⁵Cl und ¹⁰⁶ Pd): $m / e = 581 [M^+ - Cl], 539 [Pd(dppe)(C_6H_5)^+],$ 504 [Pd(dppe)⁺], 475 [dppe(C_6H_5)⁺].

6.5.2. cis-[1,3-Bis(diphenylphosphino)propan]chloro (phenyl)palladium(II) (2b)

Ausb.: 0.96 g (93% d. Th.) 2b, mikrokristalliner, farbloser Feststoff.

Elementaranalyse: Gef.: C, 62.25; H, 4.81; Cl, 6.48; P, 10.31%. $C_{33}H_{31}CIP_2Pd \cdot 0.1CH_2Cl_2$ (639.90) ber.: C, 62.13; H, 4.91; Cl, 6.65; P, 9.68%. IR (cm⁻¹, PE): 302s $(\nu(Pd-Cl))$. ¹H-NMR (400 MHz, 25°C, CDCl₃): $\delta =$ 7.84 (4H, ddd, $o-H_{aPh}$, ${}^{3}J(PH_{o}) = 10.2$, ${}^{3}J(H_{m}H_{o}) = 7.3$, ${}^{3}J(H_{p}H_{o}) = 1.2$ Hz); 7.41 (8H, m, $p-H_{aPh}$, $p-H_{bPh}$ und o-H_{bPh}); 7.30 (8H, m, m-H_{aPh} und m-H_{bPh}); 7.12 (2H, dt, o-H', ${}^{3}J(H'_{m}H'_{o}) = 7.7$, ${}^{4}J(PH') = 2.3$ Hz); 6.89 (1H, m, p-H'); 6.55 (2H, m, m-H'); 2.49 (2H, m, CH_{2(a)}); 2.31 (2H, m, $CH_{2(b)}$); 1.84 (2H, m, CH_2). ¹³C{¹H}-NMR (100.53 MHz, 25°C, CDCl₃): $\delta = 160.4$ (d, *i*-C', *trans*- $^{2}J(P_{b}C') = 127.4$ Hz); 135.2 (s, o-C'); 127.3 (d, m-C', trans- ${}^{4}J(P_{h}C') = 9.2$ Hz); 122.2 (s, p-C'); 132.2 (d, i- C_{aPh} , ¹ $J(Pi-C_{a}) = 34.3$ Hz); 131.1 (d, $i-C_{bPh}$, ¹ $J(Pi-C_{b})$ = 54.2 Hz); 133.5 (d, $o-C_{aPh}$, ${}^{2}J(Po-C_{a}) = 11.5$ Hz); 133.2 (d, $o-C_{bPh}$, ² $J(Po-C_{b}) = 10.7$ Hz); 128.6 (d, $m-C_{aPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{bPh}) = 10.7$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{a}) = 9.9$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{bPh}) = 10.7$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{bPh}) = 10.7$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{bPh}) = 10.7$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{bPh}) = 10.7$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{bPh}) = 10.7$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{bPh}) = 10.7$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{bPh}) = 10.7$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{bPh}) = 10.7$ Hz); 128.2 (d, $m-C_{bPh}) = 10.7$ Hz); 128.2 (d, $m-C_{bPh}$, ³ $J(Pm-C_{bPh}) = 10.7$ Hz); 128.2 (d, $m-C_{bPh}) = 10.7$ C_{b}) = 10.7 Hz); 130.3 (s, p- C_{aPh}); 130.1 (s, p- C_{bPh}); 29.1 (dd, C_aH_2 , ${}^1J(PC_a) = 28.2$, ${}^3J(PC_a) = 7.6$ Hz); 27.3 (dd, C_bH_2 , ${}^{1}J(PC_b) = 19.1$, ${}^{3}J(PC_b) < 2$ Hz); 19.1 (dd, CH₂, ${}^{2}J(P_aC) = 4.6$, ${}^{2}J(P_bC) < 2$ Hz). ${}^{31}P{}^{1}H$ -NMR (161.85 MHz, 25°C, CDCl₃): $\delta = 18.9$ (d, P_a, ²J(P_aP_b) = 52.3 Hz); -8.6 (d, P_b).

6.6. Synthese der Komplexe 4e,f

1.20 g (1.39 mmol) $Pd\{PPh_2(C_6H_4-p-CH_3)\}_2(Ph)I$ bzw. 1.50 g (1.68 mmol) $Pd\{PPh_2(C_6H_4-p-OCH_3)\}_2(Ph)I$, dargestellt aus der entsprechenden Pd^0 -Vorstufe des Dibenzylidenacetons und Iodbenzol bei 20°C, werden in 20.ml Methylenchlorid gelöst. Eine Lösung von 0.5 g (1.94 mmol) $Ag(CF_3SO_3)$ in 1–2 ml Acetonitril und 10 ml Methylenchlorid wird hinzugetropft, wobei sofort ein gelber Niederschlag ausfällt. Nach Zugabe von 5 g (16.9 mmol) Tetrabutylammoniumchlorid wird vom Niederschlag abfiltriert und das klare Filtrat i. Vak. bis zur Trockene eingeengt. Der Rückstand wird dreimal mit je 40 ml Methanol gewaschen und aus Methylenchlorid/n-Hexan oder Methylenchlorid/Diethylether umkristallisiert.

6.6.1. trans-Bis(diphenyl-p-tolylphosphan)chloro(phenyl)palladium(II) (4e)

Ausb.: 810 mg (76% d. Th.) 4e, farbloser Feststoff. Elementaranalyse: Gef.: C, 69.00; H, 4.91; Cl, 4.45; P, 8.31%. $C_{44}H_{39}ClP_2Pd$ (771.59) ber.: C, 68.49; H, 5.09; Cl, 4.59; P, 8.03%. ¹H-NMR (400 MHz, 25°C, CDCl₃): $\delta = 7.43$ (12H, m, o-H_{Ph₂-PTol} und o-H_{Tol-PPh₂}, ${}^{3}J(H_{m}H_{o}) = 7.3$ Hz); 7.29 (4H, t, $p-H_{Ph_{2}-PTol}$, ${}^{3}J(H_{m} H_{p} = 7.3 \text{ Hz}; 7.20 \text{ (8H, t, } m\text{-}H_{Ph_2-PTol}, {}^{3}J(H_{o}H_{p}H_{m}) = 7.3 \text{ Hz}; 7.09 \text{ (4H, d, } m\text{-}H_{Tol-PPh_2}, {}^{3}J(H_{o}H_{m}) = 7.8 \text{ Hz}; 6.61 \text{ (2H, dt, } o\text{-}H'_{Ph}, {}^{3}J(H'_{m}H'_{o}) = 7.3, {}^{4}J(PH') = 1.5 \text{ Hz}; 6.36 \text{ (1H, t, } p\text{-}H'_{Ph}, {}^{3}J(H'_{m}H'_{p}) = 7.3 \text{ Hz}; 6.21 \text{ (2H, } t = 7.2, H_{2}); 6.21 \text{ (2H, } t = 7.2, H_{2}); 6.22 \text{ (CH - 1.5)}$ t, $m \cdot H'_{Ph}$, ${}^{3}J(H'_{o}H'_{p}H'_{m}) = 7.3$ Hz); 2.33 (6H, s, $CH_{3(Tol-PPh_{2})}$). ${}^{13}C({}^{1}H)$ -NMR (100.53 MHz, 25°C, CD-Cl₃): $\delta = 21.4$ (s, CH₃); 154.1 (t, *i*-C', ²J(PC') = 4.1 Hz); 136.5 (t, o-C', ${}^{3}J(PC') = 4.8$ Hz); 127.4 (s, m-C'); 121.5 (s, *p*-C'); 131.5 (t, *i*-C_{Ph₂-P}, ${}^{1}J(PC) = 22.4$ Hz); 127.5 (t, *i*-C_{Tol-P}, ¹J(PC) = 23.4 Hz); 134.4 (t, *o*-C_{Ph2-P}, ²J(PC) = 6.2 Hz); 134.8 (t, *o*-C_{Tol-P}, ²J(PC) = 6.4 Hz); 127.7 (t, m-C_{Ph2-P}, ³J(PC) = 5.2 Hz); 128.7 (t, m-C_{Tol-P}, ${}^{3}J(PC) = 5.2 \text{ Hz}$; 129.4 (s, $p \cdot C_{Ph_2 \cdot P}$); 140.0 (s, $p \cdot C_{Tol \cdot P}$). ³¹P{¹H}-NMR (161.85 MHz, 25°C, CDCl₃): $\delta = 23.5$ (s). FAB-MS (bez. auf ³⁵Cl und ¹⁰⁶Pd): m/e = 735 $[M^+ - Cl], 658 [Pd{PPh_2(C_6H_4-p-CH_3)}_2^+], 382 [Pd$ $\{PPh_2(C_6H_4-p-CH_3)\}^+$, 367 $[PPh_2(C_6H_4-p-CH_3)^+]$, 353 [PPh₃(C_6H_4 -*p*- CH_3)⁺].

6.6.2. trans-Bis(diphenyl-p-anisylphosphan)chloro-(phenyl)palladium(II) (**4f**)

Ausb.: 1.23 g (91% d. Th.) 4f, farbloser Feststoff.

Elementaranalyse: Gef.: C, 65.45; H, 4.81; Cl, 4.58; P, 7.51; O, 4.1%. $C_{44}H_{39}ClP_2PO_2Pd$ (803.59) ber.: C, 65.76; H, 4.89; Cl, 4.41; P, 7.71; O, 3.98%. ¹H-NMR (400 MHz, 25°C, CDCl₃): $\delta = 7.53$ (4H, m, o- $H_{Anisyl-PPh_2}$, ³ $J(H_mH_o) = 8.5$ Hz); 7.41 (8H, m, o- $H_{Ph_2-PAnisyl}$, ³ $J(H_mH_o) = 7.0$ Hz); 7.29 (4H, t, p- $H_{Ph_2-PAnisyl}$, ³ $J(H_mH_p) = 7.3$ Hz); 7.21 (8H, t, m- $H_{Ph_2-PAnisyl}$, ³ $J(H_oH_pH_m) = 7.3$ Hz); 6.82 (4H, d, m- $H_{Anisyl-PPh_2}$, ³ $J(H_oH_m) = 8.5$ Hz); 6.61 (2H, dt, o-H'_Ph, ³ $J(H'_mH'_o) = 7.9$, ⁴J(PH') = 1.2 Hz); 6.37 (1H, t, p-H'_{Ph}, ³ $J(H'_mH'_p) = 7.3$ Hz); 6.22 (2H, t, m-H'_{Ph}, ³ $J(H'_o$ -H'_pH'_m) = 7.3 Hz); 3.80 (6H, s, CH₃O_(Anisyl-PPh₂)). ¹³C{¹H}-NMR (100.53 MHz, 25°C, CDCl₃): $\delta = 55.2$ (s, CH₃O); 154.5 (t, *i*-C', ²J(PC') = 3.7 Hz); 136.5 (t, *o*-C', ³J(PC') = 4.6 Hz); 127.4 (s, m-C'); 121.6 (s, p-C'); 131.8 (t, *i*-C_{Ph₂-P}, ¹J(PC) = 23.0 Hz); 121.7 (t, *i*-C_{Anisyl-P}, ¹J(PC) = 24.8 Hz); 134.3 (t, *o*-C_{Ph₂-P}, ²J(PC) = 6.0 Hz); 136.6 (t, *o*-C_{Anisyl-P}, ²J(PC) = 7.4 Hz); 127.8 (t, m-C_{Ph₂-P}, ³J(PC) = 5.1 Hz); 113.7 (t, m-C_{Anisyl-P}, ³J(PC) = 6.0 Hz); 129.4 (s, p-C_{Ph₂-P}); 160.9 (s, p-C_{Anisyl-P}). ³¹P{¹H}-NMR (161.85 MHz, 25°C, CDCl₃): $\delta = 22.9$ (s). FAB-MS (bez. auf ³⁵Cl und ¹⁰⁶Pd): m/e = 767 [M⁺ - Cl], 690 [Pd{PPh₂(C₆H₄-p-OCH₃)]₂⁺], 399 [PPh₂(C₆H₄-p-OCH₃)₂⁺], 398 [Pd{PPh₂(C₆H₄-p-OCH₃)]⁺], 369 [P-Ph₃(C₆H₄-p-OCH₃)⁺].

6.7. Umsetzung von $Pd(PPh_3)_4$ mit 4-Chlortoluol

1.00 g (0.87 mmol) Pd(PPh₃)₄ werden in 20 ml 4-Chlortoluol vorgelegt und 6 h bei 140°C erhitzt. Der überschüssige Chloraromat wird i. Vak. entfernt, der Rückstand dreimal mit je 30 ml Diethylether und 20 ml Pentan gewaschen, abfiltriert und i. Vak. getrocknet. Man erhält 550 mg (85% d. Th., bez. auf 1d) eines fast farblosen Gemisches (³¹P{¹H}-NMR) aus 90% trans-Pd(PPh₃)₂(Ph)Cl (1d), 10% trans-Pd(PPh₃)[PPh₂(C₆-H₄-p-CH₃)](Ph)Cl (3e) und Spuren von trans-Pd(P-Ph₃)₂(C₆H₄-p-CH₃)Cl (1e). In der Waschlösung lassen sich GC-MS-spektroskopisch PPh₃ und PPh₂(C₆H₄-p-CH₃) nachweisen.

¹H-NMR (400 MHz, 25°C, CDCl₃): $\delta = 7.8-7.6$ (br); 7.48 (m, o-H_{Ph-PPh2}, ³J(H_mH_o) = 7.3 Hz); 7.4 (br, o-H_{Ph2-PTol} und o-H_{Tol-PPh2}); 7.31 (t, p-H_{Ph-PPh2}, ³J (H_mH_p) = 7.3 Hz); 7.22 (t, m-H_{Ph-PPh2}, ³J(H_oH_pH_m) = 7.3 Hz); 7.09 (d, m-H_{Tol-PPh2}, ³J(H_oH_m) = 7.9 Hz); 6.61 (dt, o-H'_{Ph}, ³J(H'_mH'_o) = 7.9, ⁴J(PH') = 1.8 Hz); 6.43 (dt, o-H'_{Tol}, ³J(H'_mH'_o) = 7.9, ⁴J(PH') = 1.8 Hz); 6.36 (t, p-H'_{Ph}, ³J(H'_mH'_p) = 7.3 Hz); 6.21 (t, m-H'_{Ph}, ³J(H'_mH'_p) = 7.3 Hz); 6.21 (t, m-H'_{Ph}, ³J(H'_oH'_p) = 7.9 Hz); 2.53 (s, CH₃); 2.33 (s, CH₃(Tol-PPh₂)); 1.93 (s, CH'₃(Tol-Pd)). ³¹P{¹H}-NMR (161.85 MHz, 25°C, CD-Cl₃): $\delta = 24.2$ (s, 1d, 90%); 23.9 (d, 3e, ²J(PP) = 4.4 Hz, 10%); 23.7 (s, 1e, <1%). FAB-MS (bez. auf ³⁵Cl und ¹⁰⁶Pd): $m / e = 721 [M^+ - Cl von 3e], 707 [M^+ - Cl von 1d], 644 [Pd(PPh₃){PPh₂(C₆H₄-p-CH₃)}], 630 [Pd(P-Ph₃)²], 368 [Pd(PPh₃)⁺], 367 [PPh₂(C₆H₄-p-CH₃)²], 353 [PPh₃(C₆H₄-p-CH₃)⁺], 379 [PPh⁴], 291 [HPPh(C₆H₄-p-CH₃)²], 277 [HPPh₂(C₆H₄-p-CH₃)⁺], 263 [HP-Ph₃⁺].$

6.8. Umsetzung von $Pd(PPh_3)_4$ mit 4-Chloranisol

1.33 g (1.15 mmol) $Pd(PPh_3)_4$ werden in 10 ml 4-Chloranisol vorgelegt und 6 h bei 130°C erhitzt. Das überschüssige 4-Chloranisol wird i. Vak. entfernt, der Rückstand dreimal mit je 30 ml Diethylether und 20 ml Pentan gewaschen, abfiltriert und i. Vak. getrocknet. Man erhält 650 mg (76% d. Th., bez. auf **1d**) eines fast farblosen Gemisches (³¹P{¹H}-NMR) aus 90% trans-Pd(PPh₃)₂(Ph)Cl (**1d**) und 10% trans-Pd(PPh₃)[PPh₂-(C₆H₄-*p*-OCH₃)](Ph)Cl (**3f**). In der Waschlösung lassen sich GC-MS-spektroskopisch PPh₃ und PPh₂(C₆H₄-*p*-OCH₃) im Verhältnis 70: 30 nachweisen.

¹H-NMR (400 MHz, 25°C, CDCl₃): $\delta = 7.7-7.5$ (br, o-H_{Anisyl-PPh₂}); 7.48 (m, o-H_{Ph-PPh₂}, ³*J*(H_mH_o) = 7.3 Hz); 7,4 (br, o-H_{Ph₂-PAnisyl}); 7.31 (t, p-H_{Ph-PPh₂}, ³*J*(H_mH_p) = 7.3 Hz); 7.22 (t, m-H_{Ph-PPh₂}, ³*J*(H_oH_pH_m) = 7.3 Hz); 6.80 (d, m-H_{Anisyl-PPh₂}, ³*J*(H_oH_m) = 8.5 Hz); 6.61 (dt, o-H'_{Ph}, ³*J*(H'_mH'_o) = 7.9, ⁴*J*(PH') = 1.8 Hz); 6.36 (t, p-H'_{Ph}, ³*J*(H'_mH'_p) = 7.3 Hz); 6.21 (t, m-H'_{Ph}, ³*J*(H'_o H'_pH'_m) = 7.3 Hz); 3.96 (t, CH₃O, J = 4.9 Hz); 3.80 (s, CH₃O_(Anisyl-PPh₂); ³¹P{¹H}-NMR (161.85 MHz, 25°C, CDCl₃): $\delta = 24.2$ (s, **1d**, 90%); 23.6 (d, **3f**, ²*J*(PP) = 24.0 Hz, 10%). FAB-MS (bez. auf ³⁵Cl und ¹⁰⁶Pd): m/e =737 [M⁺ - Cl von **3f**], 707 [M⁺ - Cl von **1d**], 660 [Pd(P-Ph₃)(PPh₂(C₆H₄-p-OCH₃)⁺], 630 [Pd(PPh₃)⁺], 399 [PPh₂(C₆H₄-p-OCH₃)⁺], 339 [PPh₄⁺], 293 [HPPh₂-(C₆H₄-p-OCH₃)⁺], 263 [HPPh₃⁺].

6.9. Isomerisierung der Komplexe 1e und 1f

In einem NMR-Röhrchen werden unter Schutzgas (Ar) die Komplexe 1e bzw. 1f in Deuterochloroform (dotiert mit CH_2Cl_2) gelöst. Bei 60°C werden zu verschiedenen Zeiten ¹H-NMR-Spektren aufgenommen.

Die Produktmischung von 1e weist nach 5 h einen Umlagerungsgrad (¹H-NMR) von 85:15 auf und hat folgende spektroskopische Daten:

¹H-NMR (400 MHz, 25°C, CDCl₃): $\delta = 7.8-7.6$ (m); 7.48 (m, *o*-H_{Ph-PPh2}, ³*J*(H_{*m*}H_{*o*}) = 7.3 Hz); 7.42 (m, *o*-H_{Ph2}-PTol und *o*-H_{Tol-PPh2}, ³*J*(H_{*m*}H_{*o*}) = 7.0 Hz); 7.31 (t, *p*-H_{Ph-PPh2}, ³*J*(H_{*m*}H_{*p*}) = 7.3 Hz); 7.23 (t, *m*-H_{Ph2}PPh2, ³*J*(H_{*o*}H_{*p*}H_{*m*}) = 7.3 Hz); 7.09 (d, *m*-H_{Tol-PPh2}, ³*J*(H_{*o*} H_{*m*}) = 7.3 Hz); 7.07 (d überlappt, *m*-H_{Tol2}-PPh, ³*J*(H_{*o*} H_{*m*}) = 7 Hz); 6.61 (dt, *o*-H'_{Ph}, ³*J*(H'_{*m*}H'_{*o*}) = 7.9, ⁴*J* (PH') = 1.8 Hz); 6.43 (dt, *o*-H'_{Tol}, ³*J*(H'_{*m*}H'_{*o*}) = 7.9, ⁴*J* (PH') = 1.8 Hz); 6.36 (t, *p*-H'_{Ph}, ³*J*(H'_{*m*}H'_{*p*}) = 7.3 Hz); 6.21 (t, *m*-H'_{Ph}, ³*J*(H'_{*o*}H'_{*p*}H''_{*m*}) = 7.3 Hz); 6.08 (d, *m*-H'_{Tol}, ³*J*(H'_{*o*}H''_{*m*}) = 7.9 Hz); 2.53 (s, CH₃); 2.33 (s, CH'_{3(Tol-PPh2})); 2.32 (s überlappt, CH_{3(Tol2}-PPh)); 1.93 (s, CH'_{3(Tol-Pd1})). ³¹Pl¹H}-NMR (161.85 MHz, 25°C, CD-Cl₃): $\delta = 24.2$ (s, **1d**); 23.9 (d, **3e**, ²*J*(PP) = 4.4 Hz); 23.7 (s, **1e**); 23.6 (d, Pd{PPh₂(C₆H₄-*p*-CH₃)}{PPh(C₆H₄-*p*-CH₃)₂}{PPh₂(C₆H₄-*p*-CH₃)}(Ph(C₆H₄-*p*-CH₃)₂}(Ph)Cl], 721 [M⁺ - Cl von **3e**], 707 [M⁺ - Cl von **1d**], 672 [Pd{PPh₂(C₆H₄-*p*-CH₃)}⁺ bzw. Pd(PPh₃){PPh $(C_6H_4-p-CH_3)_2\}^+$], 644 [Pd(PPh_3){PPh}_2(C_6H_4-p-CH_3)\}^+], 630 [Pd(PPh_3)_2^+], 381 [PPh(C_6H_4-p-CH_3)_3^+], 368 [Pd(PPh_3)^+], 367 [PPh}_2(C_6H_4-p-CH_3)_2^+], 353 [P-Ph}_3(C_6H_4-p-CH_3)^+], 339 [PPh_4^+], 305 [HP(C_6H_4-p-CH_3)_3^+], 291 [HPPh(C_6H_4-p-CH_3)_2^+], 277 [HPPh}_2(C_6H_4-p-CH_3)^+], 263 [HPPh_3^+].

Die Produktmischung von **1f** weist nach 3.5 h einen Umlagerungsgrad (¹H-NMR) von 96:4 auf und hat folgende spektroskopischen Daten:

¹H-NMR (400 MHz, 25°C, CDCl₂): $\delta = 7.7 - 7.5$ (br, $o-H_{\text{Anisyl-PPh}_2}$; 7.48 (m, $o-H_{\text{Ph-PPh}_2}$, ${}^{3}J(H_{m}H_{o}) = 7.3$ Hz); 7.42 (m, $o \cdot H_{Ph_2-PAnisyl}$); 7.30 (t, $p \cdot H_{Ph-PPh_2}$, ${}^{3}J(H_mH_p)$ = 7.3 Hz); 7.22 (t, $m \cdot H_{Ph-PPh_2}$, ${}^{3}J(H_oH_pH_m)$ = 7.3 Hz); 6.80 (d, $m \cdot H_{Anisyl-PPh_2}$, ${}^{3}J(H_oH_m)$ = 8.5 Hz); 6.77 (d überlappt, $m \cdot H_{\text{Anisyl}_2\text{-PPh}}^{2}$, ${}^{3}J(H_{o}H_{m}) = 9$ Hz); 6.61 (dt, $o \cdot H'_{\text{Ph}}$, ${}^{3}J(H'_{m}H'_{o}) = 7.9$, ${}^{4}J(\text{PH}') = 1.8$ Hz); 6.42 (dt, $O-H_{Ph}$, $O(H_mH_0) = 7.3$, $O(H_1) = 1.6$ Hz), $O(H_2)$, $O-H_{Anisyl}$, $^3J(H'_mH'_0) = 8.6$, $^4J(PH') = 1.8$ Hz); 6.36 (t, $p-H'_{Ph}$, $^3J(H'_mH'_p) = 7.3$ Hz); 6.21 (t, $m-H'_{Ph}$, $^3J(H'_0)$ $H'_pH'_m) = 7.3$ Hz); 5.93 (d, $m-H'_{Anisyl}$, $^3J(H'_0H'_m) = 8.6$ Hz); 3.97 (t, CH₃O, J = 4.9 Hz); 3.80 (s, CH₃- $O_{(Anisyl-PPh_2)}$; 3.79 (s, CH₃O_(Anisyl_2-PPh)); 3.49 (s, CH'₃-O_(Anisyl-Pd)). ³¹P{¹H}-NMR (161.85 MHz, 25°C, CDCl₃): $\delta = 24.2$ (s, 1d); 23.9 (s, 1f); 23.6 (d, 3f, ²J(PP) = 24.0 Hz); 22.9 (s, 4f); 22.4 (d, Pd(PPh₃){PPh(C₆H₄-p-O- $(CH_3)_2$ (Ph)Cl, ²J(PP) = 21.8 Hz). FAB-MS (bez. auf ³⁵Cl und ¹⁰⁶Pd): m/e = 767 [M⁺ - Cl von 4f bzw. $Pd(PPh_3)(PPh(C_6H_4-p-OCH_3)_2)(Ph)CI], 737 [M^+ - Cl$ von 3f], 707 [M⁺ - Cl von 1d], 690 [Pd{PPh₂(C₆H₄-p-O- $(CH_3)_2^+$ bzw. Pd(PPh_3){PPh(C_6H_4-p-OCH_3)_2^+}, 660 $[Pd(PPh_3)(PPh_2(C_6H_4-p-OCH_3))^+], 630 [Pd(PPh_3)_2^+],$ 399 $[PPh_2(C_6H_4-p-OCH_3)_2^+]$, 369 $[PPh_3(C_6H_4-p-O (CH_3)^+$], 368 $[Pd(PPh_3)^+]$, 339 $[PPh_4^+]$, 293 $[HPPh_2^-]$ $(C_6H_4-p-OCH_3)^+]$, 263 [HPPh_3].

Dank

Der Hoechst AG, dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft danken wir für die Förderung dieser Arbeit. Insbesondere den Herren Drs. Beller, Fischer und Regnat (Zentralforschung Hoechst AG, Frankfurt am Main) sei für wertvolle Diskussionen und großzügige Chemikalienspenden gedankt.

Literatur

Überblick: (a) R.F. Heck, Palladium Reagents in Organic Synthesis, Academic Press, New York, USA, 1985; (b) R.F. Heck, Vinyl Substitutions with Organopalladium Intermediates, in Trost/Fleming (Hrsg.), Comprehensive Organic Synthesis, Vol. 4, Pergamon, Oxford, 1991, Kap. 4.3, S. 833 ff.; (c) R.F. Heck, Org. React., 27 (1982) 345; (d) J. Mulzer, H.-J. Altenbach, M. Braun, K. Krohn und H.-U. Reissig, Organic Synthesis Highlights, VCH, Weinheim, 1991, S. 174 ff.; (g) B.M. Trost und R.R. Verhoeven, Organopalladium Compounds in Organic Synthesis and Catalysis,

in Wilkinson/Stone/Abel (Hrsg.), Comprehensive Organometallic Chemistry, Vol. 8, Pergamon, Oxford, 1982, Kap. 57, S. 799 ff.

- 2 (a) P. Fitton und E.A. Rick, J. Organomet. Chem., 28 (1971) 287;
 (b) P. Fitton, M.P. Johnson und J.E. McKeon, J. Chem. Soc., Chem. Commun., (1968) 6; (c) D.R. Coulson, J. Chem. Soc., Chem. Commun., (1968) 1530; (d) R.D. Rieke und A.V. Kavaliunas, J. Org. Chem., 44 (1979) 3069; (e) J.V. Caspar, J. Am. Chem. Soc., 107 (1985) 6718; (f) C. Amatore und F. Pflüger, Organometallics, 9 (1990) 2276; (g) J.-F. Fauvarque, F. Pflüger und M. Troupel, J. Organomet. Chem., 208 (1981) 419.
- 3 (a) V.V. Grushin und H. Alper, Organometallics, 12 (1993) 1890;
 (b) V. Dufaud, J. Thivolle-Cazat und J.-M. Basset, J. Chem. Soc., Chem. Commun., (1990) 426; (c) Y. Ben-David, M. Portnoy und D. Milstein, J. Am. Chem. Soc., 111 (1989) 8742.
- 4 Y. Ben-David, M. Portnoy und D. Milstein, J. Chem. Soc., Chem. Commun., (1989) 1816.
- 5 (a) Y. Ben-David, M. Portnoy, M. Gozin und D. Milstein, Organometallics, 11 (1992) 1995; (b) A. Spencer, J. Organomet. Chem., 270 (1984) 115.
- 6 G.W. Parshall, J. Am. Chem. Soc., 96 (1974) 2360.
- 7 (a) M. Portnoy und D. Milstein, Organometallics, 12 (1993) 1655; (b) M. Portnoy und D. Milstein, Organometallics, 12 (1993) 1665.
- 8 M. Huser, M.-T. Youinou und J.A. Osborn, Angew. Chem., 101 (1989) 1427; Angew. Chem., Int. Ed. Engl., 28 (1989) 1386.
- 9 W.A. Herrmann, W.R. Thiel, C. Broßmer, K. Öfele, T. Priermeier und W. Scherer, J. Organomet. Chem., 461 (1993) 51.
- 10 J.G. Verkade, Coord. Chem. Rev., 9 (1972-73) 1.
- 11 E.G. Samsel und J.R. Norton, J. Am. Chem. Soc., 106 (1984) 5505.
- 12 (a) G.P.C.M. Dekker, C.J. Elsevier und K. Vrieze, Organometallics, 11 (1992) 1598; (b) A. Scrivanti, C. Botteghi, L. Toniolo und A. Berton, J. Organomet. Chem., 344 (1988) 261.
- 13 (a) D.T. Cromer und J.T. Waber, International Tables of Crystallography, Bd. I, Kynoch Press, Birmingham, England, 1974; (b) D.T. Cromer und J.T. Waber, International Tables of Crystallography, Bd. IV, Kynoch Press, Birmingham, England, 1974, Tab. 2.2.B; (c) D.T. Cromer und J.T. Waber, International Tables of Crystallography, Bd. IV, Kynoch Press, Birmingham, England, 1974, Tab. 2.3.1.

- 14 A.L. Spek, The EUCLID package, in D. Sayre (Hrsg.), Computational Crystallography, Clarendon Press, Oxford, England, 1982, S. 528.
- (a) W.L. Steffen und G.J. Palenik, *Inorg. Chem.*, 15 (1976) 2432;
 (b) V. Dufaud, J. Thivolle-Cazat, J.-M. Basset, R. Mathieu, J. Jaud und J. Waissermann, *Organometallics*, 10 (1991) 4005.
- 16 (a) J.R. Burmbaugh, R.R. Whittle, M. Parvez und A. Sen, Organometallics, 9 (1990) 1735; (b) F. Ozawa, A. Kubo und T. Hayashi, J. Am. Chem. Soc., 113 (1991) 1417.
- 17 (a) K. Kikukawa und T. Matsuda, J. Organomet. Chem., 235 (1982) 243; (b) K. Kikukawa, M. Takagi und T. Matsuda, Bull. Chem. Soc. Jpn., 52 (1979) 1493; (c) A.B. Goel, Inorg. Chim. Acta, 84 (1984) L25; (d) A.B. Goel, Inorg. Chim. Acta, 86 (1984) L77.
- 18 K.-C. Kong und C.-H. Cheng, J. Am. Chem. Soc., 113 (1991) 6313.
- 19 Überblick: (a) P.E. Garrou, Chem. Rev., 85 (1985) 171; (b) W.A. Herrmann und C. Kohlpaintner, Angew. Chem., 105 (1993) 1667; Angew. Chem., Int. Ed. Engl., 32 (1993) 1524; (c) R. Mason und D.W. Meek, Angew. Chem., 90 (1978) 195; Angew. Chem., Int. Ed. Engl., 17 (1978) 183; (d) D.R. Fahey und J.E. Mahan, J. Am. Chem. Soc., 98 (1976) 4499.
- 20 W.P. Fehlhammer, W.A. Herrmann und K. Öfele, in G. Brauer (Hrsg.), Handbuch der Präparativen Anorganischen Chemie, Vol. 13, Ferdinand Enke-Verlag, Stuttgart, 3rd edn., 1981, S. 2017.
- 21 (a) C.A. Tolman, W.C. Seidel und D.H. Gerlach, J. Am. Chem. Soc., 94 (1972) 2669; (b) W. Kuran und A. Musco, Inorg. Chim. Acta, 12 (1975) 187.
- 22 B.A. Frenz, The Enraf-Nonius CAD4 SDP System, in Computing in Crystallography, Delft University Press, Delft, Niederlande, 1978.
- 23 W. Scherer, P. Kiprof, E. Herdtweck, R.E. Schmidt, M. Birkhahn und W. Massa, STRUX-IV, ein Programmsystem zur Verarbeitung von Röntgendaten, TU München und Universität Marburg, Deutschland, 1990.
- 24 D.J. Watkin, P.W. Betteridge und J.R. Carruthers, CRYSTALS User Manual, Oxford University Computing Laboratory, Oxford, England, 1986.
- 25 E. Prince, Mathematical Techniques in Crystallography, Springer Verlag, Berlin, 1982.